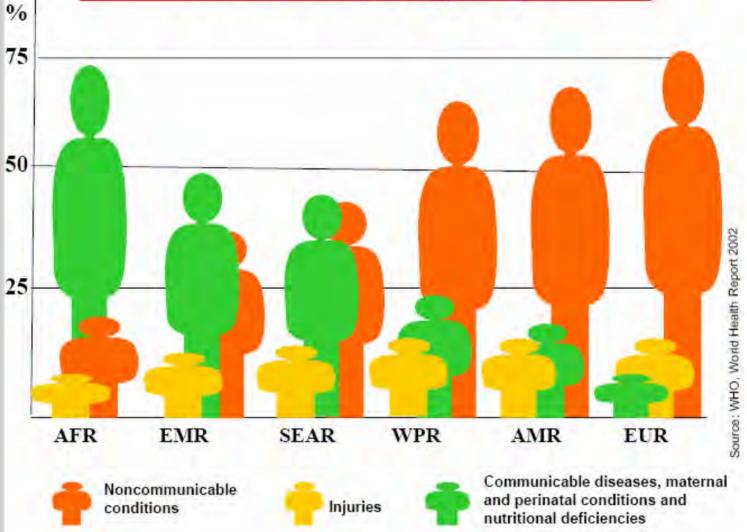
Health and wellbeing: where does food fit?

functional food centre

profitable & sustainable food innovation

Professor Linda Tapsell PhD FDAA University of Wollongong



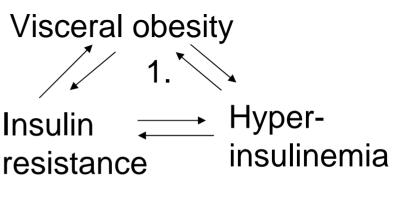
Health and Wellbeing

- Relationship with our bodies
 - Optimal growth, development and aging
 - Absence of disease
- Relationship with our food
 - Understanding core foods
 - Smart formulated foods
- Relationship with our environment
 - Sustainable production
 - Healthy innovation

Metrics:

Burden of disease in DALYs by broad cause group

Pietinen 2007; http://europe.ilsi.org/events/past/FFSympopresentations.htm


Metabolic Syndrome

(Adapted from Lean M, Clinical Handbook of Weight Management, MD, London 2003, p14)

Patients present with:

- Glucose intolerance/ diabetes
- Arterial hypertension
- Low HDL-cholesterol
- Hypertriglyceridemia
- Haemostatic disturbance
- Fibrinolytic abnormalities

Pathology

- 2. Athero-thrombosclerosis
- 3. Coronary heart disease
- 4. Premature death

Metabolic Syndrome: IDF Concensus Definition 2006 (www.idf.org)

- Central Obesity*
 - Males >95cm; females >80cm
- Plus 2 of the following
 - Trigs >1.7mmol/L
 - HDL-C > 1.03mmol/L (M); 1.29mmol/L (F)
 - SPB >130mmHg and/or DBP>85mmHg
 - Fasting plasma glucose > 5.6mmol/L
 - *Europid value (Males: 90cm for South Asian, Chinese;
 85cm for Japanese; Females 90cm Japanese)

Obesity Diabetes Heart Disease

(Diabetes Australia. The Economic Costs of Obesity. Diabetes Australia, October 2006)

In 2005

- 3.25M Australians obese (15.1%men, 16.8% women)
- RR diabetes (3.2); CHD (1.8); stroke (1.8); hypertension (2.35)
- Obesity caused 10.8% T2DM; 14% hypertension; 12%CHD; 12% stroke
- Cost obesity \$3,767B
 - Loss of productivity (\$1.7B)
 - Direct healthcare costs (\$873M)
 - Carer costs (\$804M)
- Prevalence rates expected to double by 2025

Multiple systems are at play

(Phinney S, AJCN 2005;82:1151-2; Berglund L, AJCN 2005;82:1153-4)

- Pancreatic endocrine function
- Adipose tissue
 - Regulating energy metabolism
 - Serving endocrine functions
 - Skeletal muscle and liver deposits
- Skeletal muscle
 - Type and quality

'You are what you eat'

Fat

- energy source
- cell structural components
- metabolic precursors
- gene regulators

Genetic Expression

Regulation of gene expression by dietary fats has the greatest impact in the development of insulin resistance

Clarke, J Nutr 2001;131:1129-1132.

Personalised Nutrition

(Gibney, ILSI Malta May 2007)

- Different responses to nutrient effects based on different genotypes
 - dietary fat and insulin resistance (Kluijtmans et al Eur Heart J 2001;22:294-299)
 - folate and homocysteine (Luan J et al Diabetes 2001;50:686-689)
- Optimal nutrients optimal meal patterns
- Shifts from supermarkets to e-shopping
- 'The greater the extent of personalised nutrition, the more radical the present model must change'

Food composition: tree nuts (per 100g)

Nutrient	Walnut	Almond	Pecan	Macada.	Pistach.	Cashew	Hazel.
Energy	654	578	691	718	557	566	628
PTN	15.2	21.3	9.2	7.9	20.6	18.2	15.0
СНО	13.7	19.7	13.9	13.8	28.0	27.1	16.7
Fat	65	50.6	71.9	75.8	44.4	46.9	60.8
SFA	6.1	3.9	6.2	12.1	5.4	8.3	4.5
MUFA	8.9	32.2	40.8	58.9	23.3	25.5	45.7
PUFA	47.2	12.2	21.6	1.5	13.5	8.4	7.9

Derived from Rajaram & Sabate BJN 2006;96:S85; Source USDA Aug 2005

Food composition: tree nuts (per 100g)

Nutrient	Walnut	Almond	Pecan	Macad.	Pistachio	Cashew	Hazel
Fibre	6.7	11.8	9.6	8.6	10.3	3.3	9.7
Mg	158	275	121	130	121	292	163
α Τοςο	2.9*	26.2	4.1*	0.6	4.6	1.5	15.2
Lys:Arg	0.2	0.3	0.3	0.4	0.6	0.5	0.2
Cu	1.0	0.9	1.2	0.3	1.2	2.2	1.5
Phyto- nutrients	?	?	?	?	?	?	?

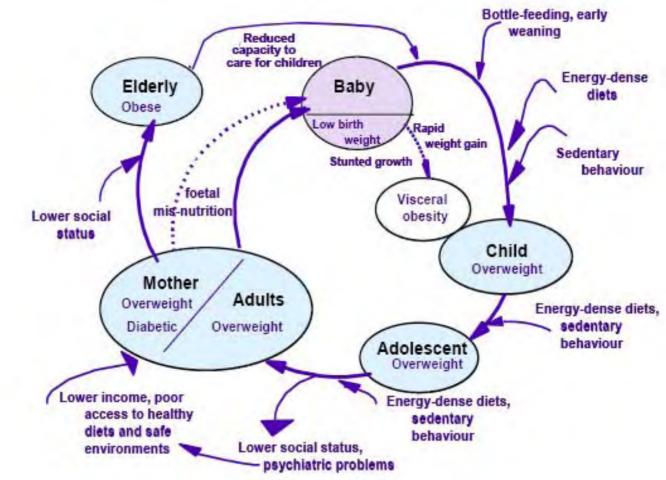
Derived from Rajaram & Sabate BJN 2006;96:S85; Source USDA Aug 2005 *γ tocopherol 17.2mg; 19.1mg respectively

Working with food (N-G Asp ILSI Malta May 2007)

- Foods can be improved by
 - Optimising nutrient content/energy density
 - Providing physical and mental benefits (health, wellbeing, performance)
 - Benefits communicated in the context of the whole diet
- Functional Foods ILSI Europe
 - 1999: Foods with demonstrated function beyond adequate nutrition
 - 2007: Foods with health claims

Proving the benefits of whole foods

Example: Walnuts as a delivery agent for PUFA (Gillen et al JADA 2005;105:1087-96)


Table 1 Outline of dietary advice provided to each advice group (n=58)

No. portions	
Distribution	
No. portions	
Type fat	
(MUFA/PUFA)	

Substantiation of benefits

- A dietary strategy inclusive of 30g walnuts per day in a balanced diet achieved an ideal fatty acid profile for diabetes management (T2DM)
- This dietary intake produced favourable changes in disease risk factors

Environment

Life course risk factors for obesity

Pietinen ILSI Malta 2007

http://europe.ilsi.org/events/past/FFSympopresentations.htm

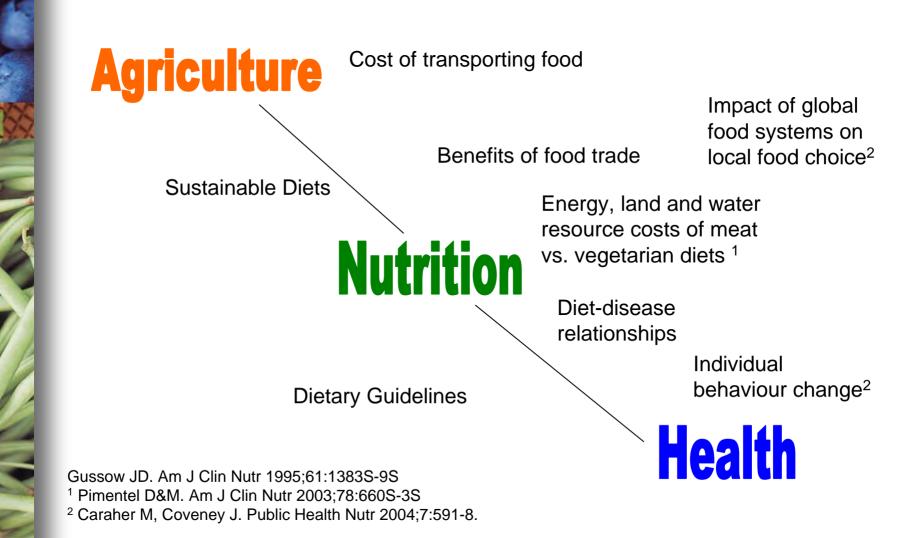
European Charter on Counteracting Obesity WHO Europe Guiding principles

- Greater responsibility of government and society and involvement of all stakeholders
- Special focus on children and on lower socioeconomic population groups
- International coordination
- Action should be taken at the overall policy level and in different settings
- Policy tools range from legislation to public/private partnerships, with particular importance attached to regulatory measures

Pietinen ILSI Malta 2007;

http://europe.ilsi.org/events/past/FFSympopresentations.htm

Public health - food industry Interdependence


Public health

Contribution to wealth of the nation 2003/4 food exports \$21.1b 17% manufacturing workforce

Consumer need for Nutritious food

Food industry

Public health nutrition and ecological sustainability

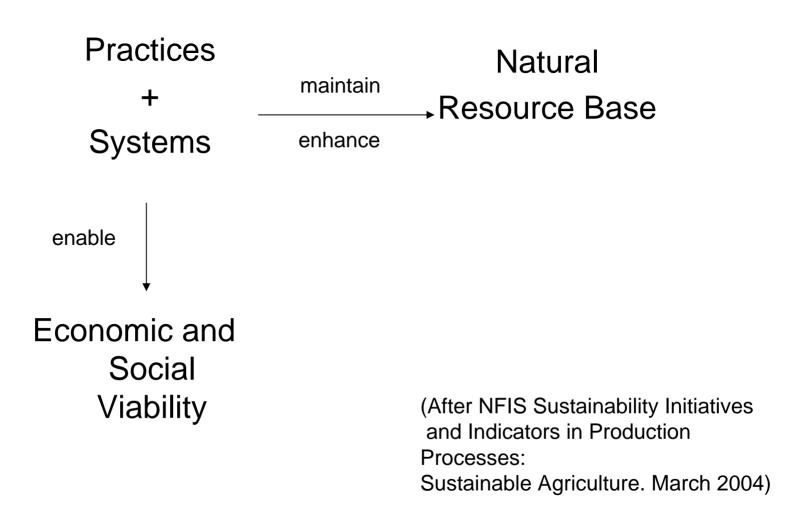
Implications for agriculture

(O'Brien Am J Clin Nutr 1995;61:1390S)

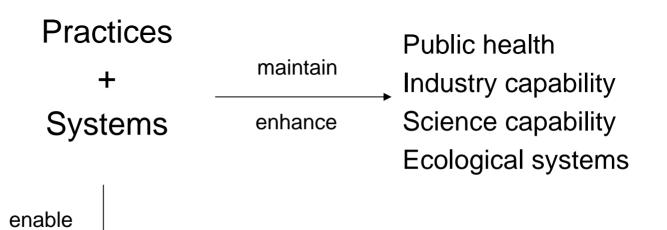
- Applications of dietary guidelines have implications for commodity disappearance rates
- Shifts towards healthier diets could be met, but mix and volume would change.
- Implications for pesticide, water use and trade with increased fruit and vegetable production
- Implications for feed-livestock with shifts in meat consumption, sector re-structuring

Public health nutrition interventions

(Seymour et al Preventive Medicine 2004;39:S108-S136)


- Intervention targets of food availability, access, pricing, point-of-purchase information (n=38; June 1970-2003)
- Dual concerns of health and taste not considered
- Sustainability of environmental change never addressed.

Sustainability and health


- Sustainability and health (Brown et al Sustainability and Health. Allen and Unwin. 2004)
 - Sustainability and health, science, economics, environmentalism
 - Linking knowledge cultures of sustainability and health: evidence base, multiple knowledges, synthesis
- Cuisine and health in Hangzhou, China (Mark et al Asia Pacific J Clin Nutr 2004:13:121-4)
 - Integrative study of the food chain, food culture and food science ...manifest by environmental sustainability, economic progress, social cohesion, health status

Sustainability

Sustainability and healthy innovation

Innovative, profitable, integrated industryscience-healthecology interface

(After NFIS Sustainability Initiatives and Indicators in Production Processes: Sustainable Agriculture. March 2004)

Health and wellbeing: Where does food fit in?

- The human body requires ideal nutrient and bioactive intakes to sustain life and prevent disease
- Food is naturally formulated to support the survival of the organism throughout the lifecycle
- Food composition can be improved to support human health and wellbeing
- Proving the benefit requires a food focus
- Public health, the environment and the food value chain are interdependent
- Future foods for future health might well work from this 'big picture'